

EFFECT OF SODIUM NITROPRUSSIDE ON PLANT GROWTH AND SEED YIELD ATTRIBUTES PARAMETERS IN CALIFORNIA POPPY

Pankaj Kumar Meena*, Anjana Sisodia and Vishnu Kumar Sharma

Department of Horticulture, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi-221 005 (U.P.), India.

*Corresponding author E-mail: pankajmeena626@gmail.com

(Date of Receiving : 28-09-2025; Date of Acceptance : 06-12-2025)

An experiment was carried out to investigate the effect of sodium nitroprusside on plant growth and seed attributes in California poppy. The field experiment was conducted during 2021-2022 at Horticultural Research Farm, Department of Horticulture, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi. There were eight treatments of sodium nitroprusside (200, 400, 600, 800, 1000, 1200, 1400 and 1600 μ M). Various doses of sodium nitroprusside were sprayed after 21 days of transplanting up to runoff stage. All the plant growth and seed attributing parameters were found significantly superior due to various levels of SNP. The maximum plant height was recorded at 60 DAT (14.43 cm) with SNP 1000 μ M, and seed weight (1.32 g) also. whereas, maximum plant spread (49.58 cm), maximum number of primary branches (26.94), maximum leaf area (40.53 cm²), maximum fresh weight of leaves (7.50 g), minimum days to capsule development (92.51 DAT), maximum number of capsules per plant (107.13), earlier capsule maturity (107.25 DAT), number of seed per capsule (114.96) and seed yield/plant (14.36 g) were recorded with treatment SNP 1200 μ M.

Keywords : California poppy, plant growth, seed yield, sodium nitroprusside.

ABSTRACT

Introduction

The California poppy (*Eschscholzia californica*) is a member of the Papaveraceous family and is native to California (USA). Along with demand in local markets, both developed and developing nations need a significant quantity of California poppy seeds. It is appropriate for flower beds, as well as walks and paths in gardens (Singh, 2005). The leaves are ternate and almost glabrous, with three finely divided lobes. Plants produce upright flowers with four satiny petals that range in colour from bright orange to light yellow and may have distinct, darker orange centres on freely branching stems (Ai *et al.*, 2017). The California poppy is a commercially significant decorative and medicinal flowering plant that is widely grown for its vivid orange, yellow, and red blossoms (Love *et al.*, 2021). It is useful for stress-physiology research because of its great drought resistance and membership in the Papaveraceae family (Asadi-Sanam *et al.*, 2018). In the winter, the open cup-shaped flowers look very attractive (Pearson *et al.*, 2021). The California poppy

is distinguished from other species in the genus by the presence of a torus rim, a pedestal at the receptacle that resembles a collar. Flowers close phototropically—that is, at night and on overcast days—when light levels are low (Aziz *et al.* 2021). In recent years, it has been discovered that plants contain nitric oxide (NO), a biologically active gas that regulates several physiological and developmental processes at nanomolar concentrations (1.0 nmol L) (Eum *et al.*, 2009). Nitric oxide is involved in germination and the initiation of lateral roots (Sarah *et al.*, 2006), as well as delaying senescence (Neill *et al.*, 2003). Nitro press is a brand name for sodium nitroprusside (SNP) (Chohan *et al.* 2012). Nitroprusside is an inorganic compound with the formula $\text{Na}_2[\text{Fe}(\text{CN})_5\text{NO}]_2\text{H}_2\text{O}$, which is usually found as a dihydrate (Ramadan *et al.* 2019). Sodium nitroprusside (SNP) -an external nitric oxide (NO) donor- has been found effective to impart salinity tolerance to plants (Zhang *et al.*, 1972). Nitric oxide is involved in germination and the initiation of lateral roots (Sarah *et al.*, 2006). Growth regulators is

a substance like SNP (sodium nitroprusside) may modulate nitric oxide signalling and alter flowering time and quality (Jhanji *et al.*, 2012). NO also modulates antioxidant enzyme activities, reduces reactive oxygen species and improves stress tolerance, which may indirectly enhance plant performance (Omer *et al.*, 2018). Enhanced chlorophyll and photosynthetic performance (if observed) could lead to more assimilate supply, supporting flowering (Neill *et al.*, 2008) SNP is used in improving morphological, physiological and biochemical attributes of flowering crops under salinity stress (Graziano and Lamattina, 2007).

Materials and Methods

A field experiment was conducted at Horticultural Research Farm, Department of Horticulture, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh to study the effect of sodium nitroprusside on plant growth and seed yield attributes in California poppy. The experiment was laid out in Randomized Block Design with five replications. The experiment site is located near the center of the North-Gangetic alluvial plain, or river Ganga on the left bank, about ten kilometers south-east of Varanasi railway station. Treatment consisted of SNP (200, 400, 600, 800, 1000, 1200, 1400 and 1600 μM) along with control (distilled water). One month old, healthy and disease-free seedlings were used for transplanting. At a spacing of 60×50 cm seedling was planted followed by light irrigation. SNP was applied third week after transplanting, while control plants were sprayed with distilled water. Observations on various growth and seed yield parameters were recorded and the experimental observations were statistically analyzed with Panse and Sukhatme, 1985 method.

Result

The application of different SNP treatments statistically influenced all plant growth parameters. The maximum plant height at 60 DAT (14.43 cm) was recorded with SNP 1000 μM which was at par with SNP 1400 μM (14.37 cm). However, maximum plant spread (49.58 cm) at 60 DAT was seen with treatment SNP 1400 μM and highest number of primary branches (26.94 cm) as well as fresh weight of leaves (7.50 g) were observed with SNP 1200 μM . SNP 1600 μM observed maximum leaf area (40.53 cm^2) which was at par with SNP 1000 μM (39.53 cm^2). Various SNP levels had significant impacts on seed production in California poppy. The maximum days of capsule development (97.17) was recorded in SNP 1000 μM while minimum days to capsule development (92.51) was seen with treatment SNP 1200 μM . The maximum

no. of capsule per plant (107.13), maximum no. of seed per capsule (114.96) maximum seed yield per plant (14.36 g) and earlier capsule maturity (107.25 DAT) were recorded with treatment SNP 1200 μM whereas the maximum no. of 1000 seed weight (1.30 g) was found with SNP 800 μM .

Discussion

The data with regard to the effect of SNP on plant height, plant spread and number of primary branches at 60 DAT was significant among all the treatments. Maximum plant height at 60 DAT (14.43 cm) was noticed with SNP 1000 μM , whereas plant spread and number of primary branches at 60 DAT were recorded at SNP 1200 μM . SNP may have contributed to maximum plant height, plant spread and primary branches since it is a potential source of NO, which is necessary for cell elongation, cell division, and tissue differentiation. Similar findings were also reported by Barzin *et al.* (2022) in pot marigold. The reason for this might be due to the function of SNP, which is strongly related to auxin and cytokine activities (Yasir *et al.*, 2021) in lentil, Farouk *et al.* 2020).

Significant differences were recorded in seed yield/plant and the number of capsules due to the influence of SNP treatments. This may be because of improvements in photosynthetic activity and assimilate partitioning towards reproductive sinks may explain the improvement in seed output and changes in yield-contributing characteristics seen in the current study in response to SNP treatments (Ramadan *et al.*, 2019) in sunflower. These results are in close agreement with the findings of Shallan *et al.* (2012) in cotton. Yasir *et al.* (2021) in lentil, Chohan *et al.* (2012) in chickpea and Gagneja *et al.* (2011) in *Brassica napus*.

Conclusion

Based on the results obtained from the present study, it can be concluded that in California poppy, foliar application of sodium nitroprusside @1000 μM expressed the highest plant height (cm) and seed weight (g). Whereas, treatment T7 (SNP 1200 μM) was recorded the highest plant spread, no. of primary branches, fresh weight of leaves, no. of capsule/plant, early capsule maturity (days), no. of seed/capsule and seed yield/plant (g). The positive response may be attributed to the role of nitric oxide in promoting cell division, photosynthetic efficiency, hormonal regulation, and assimilate translocation. Since the study covers only one growing season, these findings serve as an indicative trend; therefore, multi-season and multi-location trials are necessary to validate the consistency and reliability of the results.

Furthermore, it is stated that the findings of the experiment for one season are only representative of the best on one season of study. Thus, it is proposed

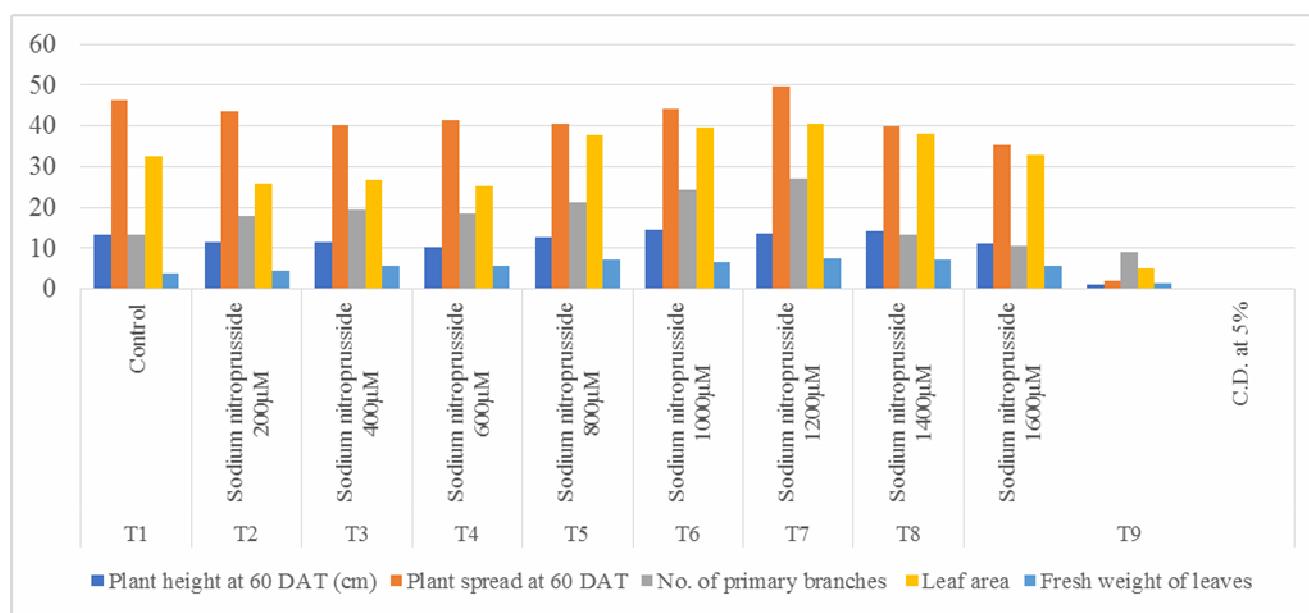

that the results be confirmed to verify the correctness of the preceding conclusion.

Table 1: Effect of sodium nitroprusside on plant growth parameter in California poppy.

Treatment Notation	Treatment	Plant height at 60 DAT (cm)	Plant spread at 60 DAT (cm)	No. of primary branches	Leaf area (cm)	Fresh weight of leaves (g)
T1	Control	13.42	46.21	13.36	32.46	3.76
T2	Sodium nitroprusside 200 μ M	11.43	43.67	17.97	25.80	4.42
T3	Sodium nitroprusside 400 μ M	11.67	40.27	19.39	26.83	5.68
T4	Sodium nitroprusside 600 μ M	10.45	41.34	18.39	25.10	5.87
T5	Sodium nitroprusside 800 μ M	12.66	40.53	21.41	37.67	7.11
T6	Sodium nitroprusside 1000 μ M	14.43	44.29	24.25	39.53	6.79
T7	Sodium nitroprusside 1200 μ M	13.67	49.58	26.94	40.53	7.50
T8	Sodium nitroprusside 1400 μ M	14.37	39.88	13.33	38.10	7.26
T9	Sodium nitroprusside 1600 μ M	11.19	35.28	10.58	32.77	5.82
	C.D. at 5%	1.13	2.01	9.16	5.13	1.32

Table 2: Effect of sodium nitroprusside on seed yield attributes parameter in California poppy.

Treatment	Days of capsule development	No. of capsule / plant	Capsule maturity (days)	No of seed / capsule	Seed yield / plant (g)	1000 seed weight (g)
Control	94.22	65.25	107.71	108.66	13.65	1.24
Sodium nitroprusside 200 μ M	94.74	70.00	108.30	109.53	10.59	1.28
Sodium nitroprusside 400 μ M	95.40	69.52	114.86	114.00	11.62	1.10
Sodium nitroprusside 600 μ M	95.48	75.26	110.36	118.69	11.10	1.22
Sodium nitroprusside 800 μ M	95.29	76.67	109.30	112.11	14.37	1.30
Sodium nitroprusside 1000 μ M	97.17	88.90	112.23	111.08	12.29	1.32
Sodium nitroprusside 1200 μ M	92.51	107.13	107.25	114.96	14.36	1.23
Sodium nitroprusside 1400 μ M	94.47	86.27	109.45	111.58	10.95	1.13
Sodium nitroprusside 1600 μ M	93.43	92.71	108.46	112.17	13.42	1.24
	C.D. at 5%	2.07	2.46	2.60	3.54	1.52
						0.05

Fig. 1: Effect of sodium nitroprusside on plant growth parameter

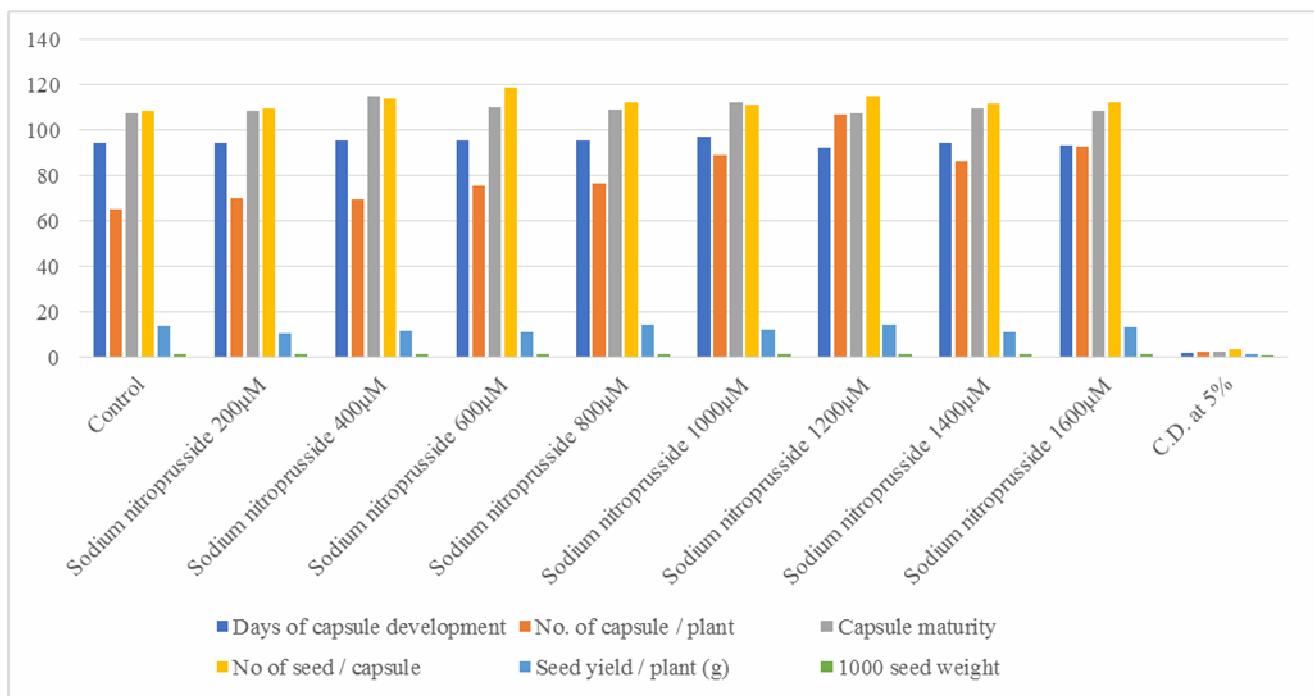


Fig. 2: Effect of sodium nitroprusside on plant seed parameters

References

Ai, T. N., Aye, T., Arun, M., Kim, C. K., Naing, A. H., Jeon and S. M. (2017). Sodium nitroprusside stimulates growth and shoot regeneration in chrysanthemum. *Horticulture, Environment and Biotechnology*, **58**(1), 78-84.

Asadi-Sanam, S., Mohammadi, S.M., Rameeh, V. and Gerami, M. (2018). Effect of sodium nitroprusside (SNP) on some of biochemical characteristics of purple coneflower (*Echinacea purpurea* (L.) Moench) under salinity stress. *Journal of Plant Process and Function*, **7**(23), 123-138.

Aziz, M., Hassan, M. M., Hassan, F. A., Iqbal, M. A., Khan, A., Mubeen, K., Rehmani, M. I. A., Sarwar, N., Skalicky, M., Wasaya, A. and Yasir, T. A. (2021). Exogenous sodium nitroprusside mitigates salt stress in lentil (*Lens culinarismedik.*) by affecting the growth, yield and biochemical properties. *Molecules*, **26**(9), 2576.

Barzin, G., Entezari, M. and Kazemi, M. M. (2022). The interaction effects of NaCl stress and sodium nitroprusside on growth, physiological and biochemical responses of *Calendula officinalis* L. *Biologia*, **5**(5), 1-11.

Chohan, A., Parmar, U. and Raina, S. K. (2012). Effect of sodium nitroprusside on morphological characters under chilling stress in chickpea (*Cicer arietinum* L.). *Journal of Environmental Biology*, **33**(4), 695-701.

Desikan, R., Hancock and J.T. Neill, S.J. (2003). Nitric oxide signalling in plants. *New Phytologist*, **159**(1), 11-35.

Eum, H. L., Kim, H. B., Choi, S. B. and Lee, S. K. (2009). Regulation of ethylene biosynthesis by nitric oxide in tomato (*Solanum lycopersicum* L.) fruit harvested at different ripening stages. *European Food Research and Technology*, **228**(3), 331-338.

Farouk, S. and Al-Huqail, A. A. (2020). Sodium nitroprusside application regulates antioxidant capacity, improves phytopharmaceutical production and essential oil yield of marjoram herb under drought. *Industrial Crops and Products*, **158**, 113034.

Gagneja, D., Kaur, N. and Setia, N. (2011). Exogenous application of sodium nitroprusside (nitric oxide donor) improves yield potential and seed quality of *Brassica napus* L. *Indian Journal of Plant Physiology*, **16**(2), 162.

Graziano, M. and Lamattina, L. (2007). Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. *The Plant Journal*, **52**(5), 949-960.

Jhanji, Shalini, R. C. Setia and Neelam Setia (2012). "Influence of sodium nitroprusside, nitric oxide donor, on growth and development of fruit in gobhi sarson (*Brassica napus*)."
The Indian Journal of Agricultural Sciences, **82**(7), 596-602.

Love, N.L., Mazer, S.J., Pearson, K.D., Ramirez-Parada, T. and Yost, J.M. (2021). Phenological trends in the California Poppy (*Eschscholzia californica*), digitized herbarium specimens reveal intraspecific variation in the sensitivity of flowering date to climate change. *Madroño*, **68**(4), 343-359.

Mousavi, S., Asadi-Sanam, S. and Pezhanmehr, M. (2019). Changes in morpho-physiological characteristics and the leaf and flower essential oils yield of coneflower (*Echinacea purpurea* (L.) Moench) with sodium nitroprusside (SNP) foliar application under drought stress. *Iranian Journal of Horticultural Science*, **50**(2), 375-391.

Neill, S. J., Desikan, R. and Hancock, J. T. (2003). Nitric oxide signalling in plants. *New Phytologist*, **159**(1), 11-35.

Neill, S., Barros, R., Bright, J., Desikan, R., Hancock, J., Harrison, J., Morris, P., Ribeiro, D. and Wilson, I. (2008). Nitric oxide, stomatal closure and abiotic stress. *Journal of experimental botany*, **59**(2), 165-176.

Nejadalmoradi, H.A.V.V.A., Nasibi, F.A.T.E.M.E.H., Kalantari, K.M. and Zanganeh, R.O.Y.A. (2014). Effect of seed priming with L-arginine and sodium nitroprusside on some physiological parameters and antioxidant enzymes of sunflower plants exposed to salt stress. *Agric Commun*, **2**(1), 23-30.

Omer, E. and Hussein, A. (2018). Alleviating effect of sodium nitroprusside on growth, biochemical composition, essential oil in chervil plant subjected to salinity stress. *Bioscience Research*, **15**(4), 4433-4451.

Pearson, K. D., Love, N. L., Ramirez-Parada, T., Mazer, S. J. and Yost, J. M. (2021). Phenological trends in the California poppy (*Eschscholzia californica*), digitized herbarium specimens reveal intraspecific variation in the sensitivity of flowering date to climate change. *Madroño*, **68**(4), 343-359.

Ramadan, A.A., Abd Elhamid, E.M. and Sadak, M.S. (2019). Comparative study for the effect of arginine and sodium nitroprusside on sunflower plants grown under salinity stress conditions. *Bulletin of the National Research Centre*, **43**(1), 1-12.

Salachna, P. and Zawadzińska, A. (2017). Effect of nitric oxide on growth, flowering and bulb yield of *Eucomis autumnalis*. In VII International Conference on Managing Quality in Chains (MQUIC2017) and II International Symposium on Ornamentals, **121**(6), 635-640.

Sarath, G., Bethke, P. C., Jones, R., Baird, L. M., Hou, G. and Mitchell, R. B. (2006). Nitric oxide accelerates seed germination in warm-season grasses. *Planta*, **223**(6), 1154-1164.

Shallan, M. A., Hassan, H. M., Namich, A. A. and Ibrahim, A. A. (2012). Effect of sodium nitroprusside, putrescine and glycine betaine on alleviation of drought stress in cotton plant. *Am Eurasian J Agric Environ Sci*, **12**(9), 1252-1265.

Singh, A. K. (2005). Growth and seed yield in California poppy (*Eschscholtzia californica* Chamisso) as influenced by plant growth regulators. *Journal of Ornamental Horticulture*, **8**(2), 159-160.

Yasir, T. A., Khan, A., Skalicky, M., Wasaya, A., Rehmani, M. I. A., Sarwar, N., Mubeen, K., Aziz, M., Hassan, M. M., Hassan, F. A. and Iqbal, M. A. (2021). Exogenous sodium nitroprusside mitigates salt stress in lentil (*Lens culinaris* medik.) by affecting the growth, yield and biochemical properties. *Molecules*, **26**(9), 2576.

Zhang and Xiaodi (1972). "Exogenous sodium nitroprusside alleviates drought stress in *Lagenaria siceraria*." *Plants* **13**(14), 972.